Silicon deposition in nanopores using a liquid precursor
نویسندگان
چکیده
Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.
منابع مشابه
Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method
Germanium nanowires (GeNWs) were synthesized using chemical vapor deposition (CVD) based on vapor–liquid–solid (VLS) mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4) as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal s...
متن کاملCharacterization and Corrosion Behavior of Hydroxyapatite- Coated Titanium Substrates Prepared Through Laser Induced Liquid Deposition Technique
Titanium and titanium alloys are often used in orthopedic surgery and dentistry because of their especial characteristics such as biocompatibility, mechanical properties, and corrosion resistance. However, their bio- inertness is the most serious drawback for biomedical applications. Therefore, a bioactive coating like hydroxyapatite (HA) is coated on their surface. In this regard, in the prese...
متن کاملOptimization of Silicon-Germanium TFT’s Through the Control of Amorphous Precursor Characteristics
Polycrystalline thin-film transistors (TFT’s) are promising for use as high-performance pixel and integrated driver transistors for active matrix liquid crystal displays (AMLCD’s). Silicon-germanium is a promising candidate for use as the channel material due to its low thermal budget requirements. The binary nature of the silicon-germanium system complicates the optimization of the channel dep...
متن کاملDirected deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst
In this work the applicability of neopentasilane (Si(SiH(3))(4)) as a precursor for the formation of silicon nanowires by using gold nanoparticles as a catalyst has been explored. The growth proceeds via the formation of liquid gold/silicon alloy droplets, which excrete the silicon nanowires upon continued decomposition of the precursor. This mechanism determines the diameter of the Si nanowire...
متن کاملFTIR analysis of silicon dioxide thin film deposited by Metal organic-based PECVD
In this study, the silicon dioxide was deposited on the silicon substrate by metal-organic based plasma enhanced chemical vapor deposition (PECVD) method at the low temperature. The metal-organic tetraethoxy-silane (TEOS) was used as a silicon precursor in liquid state. In addition, oxygen and argon were used as ambient gases. Effects of the working pressure and O2/TEOS pressure ratio on the ch...
متن کامل